
Towards Causal Interpretation on Datacenter-scale Stragglers

Jihye Choi, Apurbaa Bhattacharjee, Ashwin Keshav Tayade
{jihye, apurbaa, tayade}@cs.wisc.edu

1 Introduction

Stragglers are tasks in a job that take extremely long to
complete and delay the completion of the job. These
stragglers are a common problem in the environment of
a datacenters. Stragglers are found to extend the comple-
tion time in 20% of jobs by 1.5 times in Google datacen-
ter, and affect 47% and 29% in Facebook and Microsoft’s
datacenters [21]. Common strategies to mitigate strag-
glers are re-execution and speculative scheduling. Re-
execution finds a machine stalling with tasks, then clone
the tasks on different machine. Speculative scheduling
predicts machines that under perform and avoid schedul-
ing tasks on them. However, these approaches become
inefficient especially when data is distributed unevenly
across tasks, the tasks with large work cause the stalling.
Moreover, they mitigate the symptoms but don’t find the
root cause that give rise to stragglers. Commonly used
causal diagnosis methods even require the laborious in-
volvement of human experts and fail to scale.

There have been efforts to bring Machine Learning (ML)
ideas to efficiently identify the root causes of stragglers
from traces of datacenter-scale jobs [21, 9]. In particu-
lar, Zheng et al. introduce a statistical ML framework,
Hound [21] that provides interpretations on what sys-
tem conditions contribute to large latency from the job
traces in datacenters. Ensembling various statistical ML
methods such as predictive modeling, dependence mod-
eling and causal modeling, Hound outputs causal infer-
ence that is easy to interpret and robust to false interpre-
tations. This is one of the pioneering work in this liter-
ature. However, there still exists a lot of scope for im-
provement to address the current limitations of Hound.
To be specific, extensive evaluation on the reliability of
causal inference is required. Since a statistical model
cannot perform well on all datasets, Hound pursues the
unbiased inference, which implies that ensembling ex-
planations from multiple models can reduce the risk of
false explanations even if the minority of models suffer
from degraded performance. However, it is still unclear
to what extent the models would remain reliable under
various circumstances. If the majority of them become
degenerated under certain scenarios, simply increase the
size of ensembles by incorporating more models would

not be a scalable approach to make the majority vote un-
biased.

In this paper, focused on the causal modeling of the
Hound framework, we advance the robust inference on
straggler diagnosis with respect to the limitation as men-
tioned above. Hound’s causal model constructs Ru-
bin Causal Models (RCM) [16] with Inverse Probabil-
ity Weighting (IPW) [12] as a causal effect estimator.
Unfortunately, IPW performs poorly in the presence of
dominant irrelevant covariates or highly skewed distri-
bution of covariates [14]. These cases are prone to oc-
cur in real-world settings, especially in datacenters where
job traces are aggregated from different machines with a
wide range of diverse specifications. In need of identi-
fying the appropriate use of causal effect estimators as
a part of the Hound framework, we benchmark causal
effect estimators including IPW and other advanced esti-
mators such as Causal Forest [6] and Bayesian Network
[7] under simulation environments.

Once we identify the right causal effect estimator from
the extensive evaluation, we replace IPW of Hound with
it and present results from the real-world datasets [13, 4].
Ousterhout et al. provides the dataset for job trace analy-
sis that are generated by Spark driver while running var-
ious benchmarks on clusters of Amazon EC2 machines
and provide causal diagnosis by human experts as well
[13]. We investigate the reliability of our causal inter-
pretation framework compared to the groundtruth expert
diagnoses.

Our main contributions are the following:

• We benchmark causal effect estimators under simu-
lated settings where 1) the majority of the covariates
are irrelevant to the outcomes, and 2) the distribu-
tion of control units are highly skewed.

• We generate explanations on root causes of strag-
glers from real-world job traces.

• We evaluate the performance with our causal inter-
pretation methods in comparison to human expert
diagnoses.

1



2 Background

2.1 Problem Setting
In this section, we introduce notations we use through-
out this paper, and formalize the notion of Average
Treatment Effect (ATE) based on Rubin Causal Models
(RCM).

Consider a dataframe D = [X,Y, T ] where
X = [X1, X2, ..., Xm], Xi ∈ Rn for ∀i ∈ [m],
Y ∈ Rn and T ∈ {0, 1}n respectively denote the
continuous covariates for all units, the outcome vector
and the treatment indicator (1 for treated, 0 for control).
Notation xji indicates the value for ith covariate of
jth unit. X is a tuple of system conditions, such as
average processor usage, queuing delay and garbage
collection frequency), which represents profiles from
jobs that exhibit long-tailed latency distributions. These
job profiles are collected throughout the datacenter and
across time comprise a dataset. Y represents latency
(i.e., stragglers have large Y values). Each time, we
set ith system condition Xi as treatment factor, and
infer model that takes Y as the dependent variable and
X ′ = [X1, X2, ..., Xi−1, Xi+1, ..., Xn] as independent
variables. If xji > θ, the jth unit belongs to treated
group, where θ is some threshold. It belongs to control
group, otherwise.

Our goal is to estimate the causal effect of Xi on
Y while eliminating bias induced by other covariates,
and RCM is the right formal mathematical framework
for this purpose. For instance, we want to explain
how high and low processor usage affect the latency
while controlling for all other system conditions such
as memory usage, scheduling events, and so forth.
RCM quantifies the effect τ , which is the difference in
responses with and without treatment as follows: for the
jth sample from X ,

τ = Y j(1)− Y j(0)

where Y j(0) and Y j(1) are potential outcomes corre-
sponding to the outcome we would have observed if we
had assigned control or treatment to the jth sample. The
average treatment effect (ATE) is then defines as

τ = E[Y j(1)− Y j(0)]

This metric exhibits a methodological challenge that in
observational data, we cannot obtain both Y j(1) and
Y j(0) at the same time. Hence, to estimate τ dealing
with this counterfactualness, RCM involves causal effect
estimators such as Inverse Probability Weighting (IPW)
[12] and Causal Forest [6].

2.2 Causal Effect Estimation

Inverse Probability Weighting with Adaboost estimates
the propensity scores more accurately than regression as
it deals with problems such as collinearity, over-fitting,
and outliers in causal effect estimation.

We also explore other graphical (Bayesian Network) and
non-graphical (Causal Forest) causal estimators. Causal
forest is an advanced causal effect estimator which
estimates the heterogeneous treatment effects. The
algorithm proposed Athey and Imbens [6] is composed
of causal trees that estimate the effect of the treatment
at the leaves of the trees. In Causal Bayesian Networks
(CBN) [7], the structure learning learns the structure of
the graph, where a path from node X to node Z is defined
as a sequence of linked nodes starting at X and ending at
Z. Then we perform causal inference on the DAG, such
that, X is the cause of Z, if there is path from X to Z.

3 Modified Hound Framework

3.1 Causal Modeling

Base learner outputs concise causal explanations for
stragglers in the form of profiled metrics per job. Please
note that throughout this project, we focus on improving
the performance of CA learner. Throughout the project,
our key focus is to generate better causal inference
results, for which we modify the Hound pipeline by
detaching the PR and DP base learners and also remove
the ensemble learning which is not needed with a single
base learner. We run the modified Hound framework
on top of the Spark framework [19] by installing all the
necessary package dependencies.

Figure 1 shows our modified Hound pipeline. AIPW
base learner for causal inference is the baseline causal
inference method. We compare advanced Causal
Forest estimator with this baseline. For bench-
marking and comparing different estimators, we use
the same maximum depth level (30) for both the
DecisionTreeClassifier in AIPW and Causal

Forest implementations. We discuss in details how we
tune this hyper-parameter in Section 4.1. The CA base
learner outputs a causality profile for each of the jobs.
The causality profiles from the CA base learner are fed
into the meta learner which performs the topic modeling
using Latent Dirichlet allocation (LDA). The meta
learner finds prominent topics from the entire dataset,
then identifies a mix of relevant topics for each job. This
modified pipeline is the design we run our experiments
on in this project.

2



Figure 1: Modified Hound Framework. We use Causal Forest for Causal Modeling and LDA for Topic Modeling.

3.2 Topic Modeling

Given the profiled metrics from the previous stage, we
use Latent Dirichlet Allocation (LDA) for topic model-
ing to extract semantics across the profiles that are easy
to interpret. Metrics which occur in multiple profiles can
be considered as prominent causes of stragglers in many
jobs.

4 Evaluation

4.1 Simulations

We benchmark Athey-Imbens Causal Forest [6] on two
simulated settings that commonly arise in the practical
data-center scenarios. For detailed implementation, we
adopt the design of generating simulation datasets from
[11, 1]. For benchmarking the causal forest and causal
Bayesian network estimators, we build upon the imple-
mentation of [3, 2].

Presence of Irrelevant Covariates Out of 15 covariates
in total, there are 5 important covariates and 10 irrele-
vant covariates. For important covariates 1 ≤ i ≤ 5
let αi ∼ N(10s, 1) with s ∼ Uniform{1, 1}, βi ∼
N(1.5, 0.15), xi ∼ Bernoulli(0.5). For unimportant co-
variates 5 < i ≤ 15, xi ∼ Bernoulli(0.1) in the control
group (ti = 0) and xi ∼ Bernoulli(0.9) in the treatment
group (ti = 1). This simulation generates 30000 sam-
ples (15000 control units and 15000 treatment units) for
model fitting, and 10000 samples (5000 control units and
5000 treatment units) for evaluation.

Table 1 shows the results obtained on the simulated
dataset having irrelevant covariates using three different
causal estimators; AIPW, Causal Forest, and Bayesian
Network. In Table 1 we have shown the difference in

values of the ground truth ATE and the predicted ATE.
The values show that AIPW and Causal Forest will be
more robust estimators when the dataset has irrelevant
covariates.

Table 1: Predicted ATE subtracted from ground-truth
ATE for simulation data with irrelevant covariates

AIPW Causal Forest Bayesian Network

0.467 -0.398 3.15

Table 2: Predicted ATE subtracted from ground-truth
ATE for simulation data with different imbalance ratios

AIPW Causal Forest Bayesian Network

Ratio 1 45.62 1.04 76.98
Ratio 2 41.60 1.44 51.12
Ratio 3 35.10 0.08 35.06
Ratio 4 0.33 -0.27 5.72
Ratio 5 -8.57 -1.95 -8.53
Ratio 6 -33.92 0.82 -33.92

Imbalanced Data The data for this experiment has co-
variates with decreasing importance. We generate a fixed
batch of 2000 treatment and 40000 control units. We
sample from the controls to construct different imbal-
ance ratios: 40000 in the most imbalanced case (Ratio
1), then 20000 (Ratio 2), 10000 (Ratio 3), 2000 (Ratio
4, balanced number of control and treatment units), 1000
(Ratio 5), and 100 (Ratio 6).

Table 2 shows the results obtained on the simulated
dataset having different levels of imbalance using three
different causal estimators; AIPW, Causal Forest, and
Bayesian Network. We perform experimental trials

3



Table 3: Causal topics extracted across the Lenovo traces using AIPW and Causal Forest estimators

Topic AIPW CF
Topic Keywords Weights Topic Keywords Weights

T0

CTN MEM USAGE(-) ,
CTN NET T BYTES(-) ,
CTN CPU USAGE(-) ,
CTN NET R BYTES(-)

[0.32,
0.24,
0.24,
0.21]

CTN NET T BYTES(-) ,
CTN NET R BYTES(-) ,

MACHINE MEM USAGE(-) ,
MACHINE CPU USAGE(-)

[0.39,
0.3,
0.16,
0.15]

T1 CTN CPU USAGE(+) [1.]

MACHINE NET T BYTES(+) ,
MACHINE CPU USAGE(+) ,
MACHINE NET R BYTES(+) ,

CTN NET R BYTES(+) ,
CTN NET T BYTES(+) ,
CTN CPU USAGE(+)

[0.24,
0.2,
0.19,
0.14,
0.12,
0.11]

T2

MACHINE CPU USAGE(+) ,
MACHINE NET T BYTES(+) ,
MACHINE NET R BYTES(+)

[0.47,
0.27,
0.26] CTN MEM USAGE(-) [1.]

T3

MACHINE NET R BYTES(-) ,
MACHINE NET T BYTES(-) ,
MACHINE CPU USAGE(-)

[0.37,
0.32,
0.31]

MACHINE NET R BYTES(-) ,
MACHINE NET T BYTES(-)

[0.58,
0.42]

T4
CTN NET R BYTES(+) ,
CTN NET T BYTES(+)

[0.5,
0.5] MACHINE CPU USAGE(+) [1.]

T5 CTN MEM USAGE(+) [1.]
CTN MEM USAGE(+) ,
MACHINE MEM USAGE(-)

[0.64,
0.36]

T6 MACHINE MEM USAGE(-) [1.]

MACHINE CPU USAGE(+) ,
MACHINE NET R BYTES(+) ,
MACHINE NET T BYTES(+)

[0.4,
0.31,
0.29]

T7 MACHINE MEM USAGE(+) [1.] MACHINE MEM USAGE(+) [1.]

to tune the maximum depth hyper parameter of the
DecisionTreeClassifier in the AIPW estima-

tor. We try different depth levels from 1 to 30 for each
of imbalance ratios, and report the best result. In Table 2
the depth level used for Ratio 1, 2, and 3 is 30, for Ratio
4 is 2, for Ratio 5 is 20, for Ratio 6 is 10. We can observe
here that for the balanced dataset (Ratio 4), APIW gives
optimal results with very small depth level of the deci-
sion tree classifier. In Causal Forest estimator, we set the
maximum depth level value as 30 which gives us close
to optimal results. From Table 2 we observe that for the
different levels of imbalance in the dataset, Causal Forest
performs better than AIPW and Bayesian Network.

4.2 Real-world Datasets

In this section, we present experimental results from
two real-world datasets; 1) a trace from Lenovo’s con-
tainers and 2) a trace from a datacenter running Spark
workloads. Table 4 shows the features used for each
of datasets. We use AIPW and Causal Forest as causal
effect estimators in Causal Modeling, and qualitatively
evaluate their performance in comparison to expert diag-
nosis in Section 4.2.3.

4.2.1 Lenovo trace

Lenovo dataset has 140 jobs and 219,142 tasks. Ta-
ble 3 summarizes the topics extracted across the Lenovo
dataset. Table 5 shows an example of final causal inter-
pretations when AIPW estimator is used.

4.2.2 Spark trace

Ousterhout et al. provides JSON logs from running the
Big Data Benchmark and TPC-DS Benchmark on clus-
ters of 5-60 machines [13]. These are collected by the
Spark driver (version 1.2.1) while running various bench-
marks on clusters of Amazon EC2 machines. The dataset
contains 7 different traces, 2 of which are runs which use
Big data benchmark (BDBench) using 5 machines and
the rest are traces from TPC-DS benchmark. We only
use the first trace which has been collected using 6 tri-
als and in each trial, 10 queries were executed in random
order. We flatten the JSON trace into a CSV file, drop
the null values, and add a small delta value for the zero
values to take care of the division by zero errors.

Table 6 and Table 7 summarizes the topics found from
the Spark BDBench trace using AIPW and Causal Forest
estimators respectively.

4



Table 4: Task metrics for the Lenovo trace and the Spark trace.

Dataset Task Metric

Lenovo

CTN CPU REQ, CTN MEM REQ, CTN CPU USAGE, CTN MEM USAGE,
CTN NET R BYTES,CTN NET T BYTES, MACHINE CPU USAGE,

MACHINE MEM USAGE, MACHINE NET R BYTES, MACHINE NET T BYTES

Spark

JVM GC Time, Shuffle Write Time, Hadoop Bytes Read,
Bytes Received Per Second, Bytes Transmitted Per Second,

CPU Utilization Total System Utilization,
Cpu Utilization Counters Total User Jiffies,
Executor Run Time, Shuffle Bytes Written

Table 5: Causal inference results with AIPW estimator

CTN ID+ Topics Confidence
carts-5874b9657f
-b95v6-2018-05-25 [2] [1.]

front-end-79f895cb65
-phhm7-2018-05-24 [6] [1.]

front-end-79f895cb65
-42x5g-2018-05-27 [2, 3, 6]

[0.53, 0.24,
0.23]

Table 9 shows an example of the final inference results
using AIPW and Causal Forest estimators. This causal-
ity profile has a list of metrics with their statistical sig-
nificance. Each topic has several metrics with their con-
fidence scores summing up to 1. We observe that for
several jobs there are mixed causes of stragglers.

4.2.3 Comparison with human expert diagnoses

In this section, we analyse the causes behind majority
fraction of the stragglers in the Spark BDBench work-
load. Table 7 and 6 illustrate that causal forest leads to
learning more fine-grained topics as compared to AIPW.
We define contradicting topics as those having topic key-
word such as X(-) in a topic, but X(+) in another.
The topics extracted from causal forest show lesser num-
ber of contradicting topics, hence we claim that the qual-
ity of topics identified by causal forest estimator is better
as compared to AIPW estimator.

Ousterhout et al. provides expert diagnoses for the
causes of stragglers for the BDBench (memory) [13].
In the expert analysis paper, Shuffle write (disk) and
Garbage collection are the causes for majority fraction
of the stragglers in BDBench workload. From Figure
2 (c) and (d), we analyse the top topics contributing to
straggler causes. The results using AIPW do not make
concrete sense in identifying the straggler causes, since
both T5 and T0 have contradicting topics. T5 can be
interpreted as Shuffle write (disk) with low confidence
score. The results using Causal Forest identify T1, T0,
and T3 as causes for most of the stragglers. T1, T3 can
be interpreted as Shuffle write (disk), T0 can be inter-

preted as Garbage collection. From our comparison with
the human expert diagnoses of the Spark traces, we can
see that the interpretations obtained from causal forest
estimator are more consistent with the ground truth than
the interpretations from AIPW estimator.

5 Related Work

5.1 Straggler Mitigation
Dean and Ghemawat [8], pointed out several causes for
stragglers such as defects in hardware, incorrect hard-
ware configurations, resource competition. Anantha-
narayanan et al. [15] also pointed out that stragglers con-
sistently slow down the the completion of jobs. strag-
glers might occur due to some transient node behavior
like how many tasks are currently running on a single
node, how much is the resource contention in the node,
or what is the pattern of workload on the node. Some
state-of-the-art straggler mitigation methods [15] include
replicating or spawning multiple redundant copies of the
tasks on several nodes, and considering the execution
time of the task which completes first. These meth-
ods primarily use speculative re-execution [8], [20] and
scheduling approaches [15], [17]. If there is some prior
knowledge about a node being slow for a particular type
of task, then the scheduling mechanism will avoid nodes
for tasks which are known to perform poorly on them.

5.2 Causal Discovery
As [10] does, we could explore whether stragglers are
caused by interference from background daemons, poor
scheduling, constrained concurrency models, or power
throttling. [10] requires deep expertise in the specific
system and architecture.

On the other hand, Zheng et al. proposes a ML-inspired
framework, Hound that automates the generation of root
cause diagnosis [21]. To output interpretable and robust
explanations, Hound constructs three basic statistical es-
timators Hound framework’s Rubin CA model uses basic

5



Topic Topic Keywords Weights

T0

Bytes Transmitted Per Second(-) ,
Executor Run Time(+) ,

Cpu Utilization Counters Total User Jiffies(+)

[0.35,
0.33,
0.32]

T1

JVM GC Time(-) ,
Shuffle Bytes Written(+) ,
Shuffle Write Time(+) ,

CPU Utilization Total System Utilization(-)

[0.43,
0.25,
0.17,
0.14]

T2
Bytes Received Per Second(-) ,
Bytes Transmitted Per Second(-)

[0.68,
0.32]

T3

Executor Run Time(+) ,
Cpu Utilization Counters Total User Jiffies(+) ,

CPU Utilization Total System Utilization(-)

[0.36,
0.33,
0.31]

T4 JVM GC Time(-) [1.]

T5

JVM GC Time(-) ,
Cpu Utilization Counters Total User Jiffies(+) ,

Shuffle Bytes Written(+) ,
Executor Run Time(+)

[0.37,
0.23,
0.21,
0.19]

T6 Shuffle Bytes Written(+) [1.]

T7

JVM GC Time(+) ,
Cpu Utilization Counters Total User Jiffies(+) ,

Executor Run Time(+) ,
CPU Utilization Total System Utilization(+)

[0.37,
0.28,
0.2,

0.14]

Table 6: AIPW
Topic Topic Keywords Weights

T0 JVM GC Time(+) , Executor Run Time(+)
[0.72,
0.28]

T1

Shuffle Bytes Written(+) ,
Cpu Utilization Counters Total User Jiffies(+) ,

Executor Run Time(+)

[0.36,
0.33,
0.31]

T2

Executor Run Time(+) ,
Shuffle Write Time(+) ,

Cpu Utilization Counters Total User Jiffies(+) ,
CPU Utilization Total System Utilization(+)

[0.48,
0.18,
0.17,
0.17]

T3

Shuffle Write Time(+) ,
Bytes Received Per Second(-) ,

Bytes Transmitted Per Second(-) ,
CPU Utilization Total System Utilization(-) ,

Executor Run Time(+)

[0.25,
0.23,
0.19,
0.18,
0.15]

T4
Executor Run Time(+) ,

CPU Utilization Total System Utilization(-)
[0.62,
0.38]

T5
Executor Run Time(+) ,

JVM GC Time(-)
[0.53,
0.47]

T6
Cpu Utilization Counters Total User Jiffies(+) ,

Executor Run Time(+)
[0.55,
0.45]

T7 JVM GC Time(+) [1.]

Table 7: Causal Forest

Table 8: Hound’s causal topics, topic keywords, and confidence weights from the Spark BDBench trace using AIPW
or Causal Forest as causal effect estimator

6



(a) From Lenovo trace, when AIPW is used in causal mod-
eling

(b) From Lenovo trace, when Causal Forest is used in
causal modeling

(c) From Spark trace, when AIPW is used in causal model-
ing

(d) From Spark trace, when Causal Forest is used in causal
modeling

Figure 2: The causes identified for the stragglers from Lenovo and Spark traces. These plots show the distribution
across all queries of the fraction of the query’s stragglers that can be attributed to a particular topic.

Table 9: Causal inference results on Spark BDBench us-
ing different causal estimators. The topics are described
in Table 6 for AIPW estimator and Table 7 for Causal
Forest estimator. From the 86 Spark jobs we have sam-
pled the causal inference for the latency of those jobs.

Job ID AIPW CF
Topic Confidence Topic Confidence

job 83 T6 [1.] T1 [1.]

job 46
T5,
T4

[0.59,
0.41]

T5,
T1,
T6

[0.39,
0.39,
0.21]

job 7

T1,
T2,
T0

[0.56,
0.24,
0.2]

T3,
T1,
T0

[0.43,
0.39,
0.18]

job 1 T7 [1.]

T5,
T4,
T6

[0.44,
0.32,
0.24]

job 33 T2 [1.]
T4,
T3

[0.57,
0.43]

job 67 T5 [1.] T7 [1.]

statistical methods such as Predictive Modeling, Depen-
dence Modeling and Causal Modeling. Also, unlike the
above, Hound is independent of any specific system or
architecture detail.

6 Conclusion
In this work, we used advanced causal estimators instead
of the AIPW estimator used in the original hound im-
plementation with the goal to see how advanced estima-
tors can improve causal interpretations. We observed
that Causal Forest gives more fine-grained topics with
closer interpretations with the expert diagnoses results
than AIPW. Causal Forest is quite slow running as com-
pared to AIPW used in the original implementation of
Hound. Hence in addition to the quality of results, per-
formance is another factor that can be explored to con-
clude which estimator is more robust than the other.
Maybe a deeper and more extensive study is required to
make a decisive conclusion.

Other advanced estimators can be benchmarked with

7



different datasets having ground truth expert diagnoses.
Advanced non-graphical estimators such as Synthetic
Control [5], Bayesian Rule Lists [18] or graphical esti-
mators like Bayesian network [7] can be explored as a fu-
ture work. During this work, we have tried out Bayesian
networks on the simulated dataset, but could not integrate
it in Hound in time. To integrate Bayesian network in
Hound, we need to perform clustering on the graph em-
beddings to obtain the causal interpretations. The causal
inference can further be extended to deep learning meth-
ods for causal inference [22].

References
[1] Bayesian network implementation. https://

github.com/almostExactMatch/daemr.

[2] Bayesian network implementation. https:
//github.com/quantumblacklabs/
causalnex/tree/develop/docs/
source.

[3] Causal forest implementation. https://
github.com/timmens/causal-forest.

[4] Hound implementation. https://www.
seas.upenn.edu/˜leebcc/documents/
zheng2018-hound.zip.

[5] A. Abadie. Using synthetic controls: Feasibil-
ity, data requirements, and methodological aspects.
Journal of Economic Literature, 2019.

[6] S. Athey and S. Wager. Estimating treatment effects
with causal forests: An application. arXiv preprint
arXiv:1902.07409, 2019.

[7] S. Chiappa and W. S. Isaac. A causal bayesian
networks viewpoint on fairness. IFIP Advances in
Information and Communication Technology, page
3–20, 2019.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[9] H. Du and S. Zhang. Hawkeye: Adaptive straggler
identification on heterogeneous spark cluster with
reinforcement learning. IEEE Access, 8:57822–
57832, 2020.

[10] J. Li, N. K. Sharma, D. R. Ports, and S. D. Grib-
ble. Tales of the tail: Hardware, os, and application-
level sources of tail latency. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–
14, 2014.

[11] Y. Liu, A. Dieng, S. Roy, C. Rudin, and A. Vol-
fovsky. Interpretable almost matching exactly for
causal inference, 2019.

[12] J. K. Lunceford and M. Davidian. Stratification and
weighting via the propensity score in estimation
of causal treatment effects: a comparative study.
Statistics in medicine, 23(19):2937–2960, 2004.

[13] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance
in data analytics frameworks. In 12th {USENIX}
Symposium on Networked Systems Design and Im-
plementation ({NSDI} 15), pages 293–307, 2015.

[14] D. Pregibon. Resistant fits for some commonly
used logistic models with medical applications.
Biometrics, pages 485–498, 1982.

[15] X. Ren, G. Ananthanarayanan, A. Wierman, and
M. Yu. Hopper: Decentralized speculation-aware
cluster scheduling at scale. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication, pages 379–392, 2015.

[16] D. B. Rubin. Causal inference using potential out-
comes: Design, modeling, decisions. Journal of the
American Statistical Association, 100(469):322–
331, 2005.

[17] N. J. Yadwadkar, G. Ananthanarayanan, and
R. Katz. Wrangler: Predictable and faster jobs
using fewer resources. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–
14, 2014.

[18] H. Yang, C. Rudin, and M. Seltzer. Scalable
bayesian rule lists. In International Conference
on Machine Learning, pages 3921–3930. PMLR,
2017.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’12, page 2, USA, 2012. USENIX Associa-
tion.

[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. H.
Katz, and I. Stoica. Improving mapreduce perfor-
mance in heterogeneous environments. In Osdi,
volume 8, page 7, 2008.

[21] P. Zheng and B. C. Lee. Hound: Causal learning
for datacenter-scale straggler diagnosis. Proc. ACM
Meas. Anal. Comput. Syst., 2(1), Apr. 2018.

8



[22] Álvaro Parafita and J. Vitrià. Causal inference with
deep causal graphs, 2020.

9


