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Abstract
When training a model with observational data, it
is often encountered that some values are system-
atically missing. Learning from such incomplete
data using conventional gradient descent may lead
to biased estimates of model parameters and even
harm the fairness of the decision outcome. In this
paper, inspired by doubly robust estimator in ob-
servational studies, we propose stochastic doubly
robust gradient (SDRG), which is a stochastic gra-
dient descent (SGD) that can deal with the causal
missingness in training data. Also, we identify the
connection between double robustness and vari-
ance reduction in SGD by demonstrating SDRG
within a unifying framework for variance reduced
SGD. The performance of our approach is em-
pirically tested by showing the convergence in
training image classifiers with several examples
of missing data.

1. Introduction
The missing data problem is commonly encountered when
training a machine learning model with real world data:
unlike in the case of clean-cut experimental data, one or
more covariates are often missing in recorded observations.
Learning from this incomplete data may introduce an unde-
sirable bias, especially when the missingness mechanism is
not completely at random. More specifically, if the missing-
ness depends on some covariates (e.g., gender, age, religion,
and race) involved in generating the data, the estimation
based on these unequally collected observations can be sig-
nificantly different from the ideal result. This does not only
interfere with the consistency in the learning process, but
may also have a profound effect on the fairness of learning
outcome (Rotnitzky et al., 1998; Tu et al., 2019).

To mitigate this problem, one may want to infer the causal
effect of covariates on the missingness mechanism when
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training models. Doubly robust estimator (Robins et al.,
1994; Rotnitzky et al., 1998), first introduced in the area of
observational study, has been known as an effective method
to deal with such causal missingness and still remains pop-
ular (Bang & Robins, 2005; Kang et al., 2007; Rotnitzky
et al., 2012; Han & Wang, 2013; Zubizarreta, 2015). It em-
ploys two well-known approaches, regression adjustment
and inverse propensity score weighting, and by its interest-
ing theoretical property, guarantees that the estimate remains
unbiased as long as either of the two is specified correctly.
In recent years, the double robustness has emerged in wide
range of machine learning areas including covariate shift
(Reddi et al., 2015b), adversarial training (Kallus, 2018),
and reinforcement learning (Dudı́k et al., 2011; Jiang & Li,
2016; Thomas & Brunskill, 2016; Farajtabar et al., 2018).

In this paper, we introduce the concept of doubly robust
estimator to stochastic gradient descent (SGD) to correct
the bias induced by the causal missingness in training data
while reducing the variance of SGD. Our approach, namely
stochastic doubly robust gradient (SDRG), consists of per-
covariate control variates and weight-corrected gradients
that serve as the methods for regression adjustment and
inverse propensity score weighting, respectively. To the best
of our knowledge, SDRG is the first SGD algorithm that
provides the property, double robustness.

Recently, the use of control variate methods have been exces-
sively studied in the literature of variance reduction of SGD
for accelerating the convergence (Roux et al., 2012; Defazio
et al., 2014; Johnson & Zhang, 2013; Wang et al., 2013;
Reddi et al., 2016). Among these works, stochastic variance
reduced gradient (SVRG) (Johnson & Zhang, 2013) and
SAGA (Defazio, 2015), which is an unbiased estimate of
stochastic average gradient (SAG) (Roux et al., 2012), are
closely related to SDRG in that both of them and SDRG can
be viewed within a generic framework for control variates
of variance reduced SGDs (Reddi et al., 2015a), as SDRG
involves the use of per-covariate control variates. Finding
the connection between the ways control variates are used,
we will show how pursuing double robustness in gradient
estimation is aligned with reducing the variance.

Although SDRG and the variance reduced SGDs look simi-
lar to each other, there is a notable difference in the situation
they can handle: each gradient estimate should be weighted
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Stochastic Doubly Robust Gradient

unequally to reflect the missingness in training data and the
weight-corrected gradients in SDRG are devised to address
this need, whereas the aforementioned variance reduction
methods can only consider the equal contribution of individ-
ual gradients. The SDRG algorithm can be straightforwardly
applied to practical scenarios such as class imbalance prob-
lem, as we demonstrate in this paper considering some con-
textual information (such as class-label or any kind of tag)
of training data as the covariates.

In summary, our contributions are as follows:

• We propose the first doubly robust SGD algorithm, called
SDRG, and demonstrate that SDRG can be devised in
much the same way of SAGA and SVRG with comparable
convergence guarantee.

• We define per-covariate momentum functions as control
variates of SDRG, and show that it does not require to ei-
ther periodically calculate (as SVRG) or store (as SAGA)
the full gradients.

• We provide a relation between SDRG and momentum,
which is a much more direct derivation than the previous
relationship presented in (Roux et al., 2012).

• We experimentally show the performance of SDRG in
training image classifiers with class-imbalanced MNIST
and fashion-MNIST datasets since they are simple, yet
commonly arising form of missing data problems.

To clarify, we remark that our work is not aligned with the
approaches that employ non-uniform importance sampling
for variance reduction in SGD based (Needell et al., 2014;
Zhao & Zhang, 2015; Katharopoulos & Fleuret, 2018; Kern
& Gyorgy, 2016; Shen et al., 2016). Rather than proposing
a sampling criteria, the purpose of our work is to develop
a robust learning algorithm when the weights are already
determined with regards to the causal missingness.

2. Background and Related Work
A principled optimization problem in modern machine learn-
ing is that of the finite-sum form: minimization of an ob-
jective function f(θ) that are naturally expressed as a sum-
mation over a finite set of data D = {xi}ni=1, which is
described as,

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

wifi(θ) (1)

where θ is a parameter to be optimized over, each term
fi(θ) contributes with the weight wi, and wi = 1 for typical
setup. Such objective in Eqn. (1) commonly appears in the
empirical risk minimization framework where the objective
is the average of losses computed over the data in D, that is,
fi(θ) := L(θ;xi).

Algorithm 1 Generic Control Variate Method in SGD

Initialize: θ0 ∈ Rd, θ̃ = θ0, ∀i : gi(θ̃) = 0, η > 0

1: for t = 0, ..., (T − 1) do
2: (Uniform-) randomly pick an it ∈ {1, ..., n}
3: Compute the surrogate estimation of ∆θt:

∆θt = ∇fit(θ
t)− git(θ̃) +

1

n

n∑
i=1

git(θ̃)

4: Update the parameter θt+1:
θt+1 ← θt − η ∆θt

5: Update the schedule git(·) and/or θ̃:
Option I (SVRG): update gi(·), θ̃ using Eqn. (3)
Option II (SAGA): update git(θ̃) using Eqn. (4)

6: end for
7: return θT

Stochastic gradient descent (SGD) is a method of choice to
deal with such optimization problem. It iteratively updates
the design parameter as follows: for each training iteration
t = 1, 2, ..., T ,

θt+1 = θt − η ∆θt

∆θt = ∇fit(θ
t)

where η > 0 is a learning rate, it ∈ {1, ...n} and fit(·) is
the loss computed with xit which is drawn iteratively from
a training set D.

In recent years, a class of algorithms to improve the con-
vergence of SGD by reducing the variance of the estimates
has been proposed (Roux et al., 2012; Johnson & Zhang,
2013; Wang et al., 2013; Defazio et al., 2014). Especially,
Reddi et al. (Reddi et al., 2015a) provides a formal unifying
framework as Alg. 1 for stochastic variance reduction meth-
ods proposed in the literature, including SVRG (Johnson &
Zhang, 2013), SAGA (Defazio et al., 2014), and SAG (Roux
et al., 2012). The basic idea behind the variance reduction
methods is to augment the gradient with a control variate
and its expectation as,

∆θt = ∇fit(θ
t)− git(θ̃) + E[gi(θ̃)] (2)

where θ̃ is an approximation of θ. The resulted estimate
is unbiased, and has smaller variance if git(θ̃) has a high
correlation with the target estimate ∇fit(θ

t). That is, for
the control variates to be effective and sound, they must
satisfy that: (i) they have a high correlation with the target
gradient and (ii) their expectation (with respect to random
data samples) is inexpensive to compute.

As studied in (Reddi et al., 2015a), the mechanisms of updat-
ing control variates, {gi(θ̃)}ni=1 can be arranged within the
unifying framework (see line 5 of Alg. 1) for the well-known
variance reduction methods:
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Stochastic Doubly Robust Gradient

SVRG The control variate gi(θ̃) is updated using the gra-
dient ∇fi(θ̃) at every iteration, but the parameter θ̃ is up-
dated after every m > 0 iterations as:

gi(θ̃) = ∇fi(θ̃) for all i

θ̃ =

{
θt if t mod m = 0

θ̃ otherwise.
(3)

SAGA The gradients of all functions {∇fi(θ)}ni=1 are
kept in memory, and one of them corresponding to the train-
ing instance is updated at every iteration as:

gi(θ̃) =

{
∇fi(θt) if i = it

gi(θ̃) otherwise.
(4)

For SAG, the only difference with SAGA is that the line 3
of Alg. 1 is changed into,

∆θt =
1

n

[
∇fit(θ

t)− git(θ̃)
]

+
1

n

n∑
i=1

git(θ̃). (5)

One may notice that SAG update rule does not exactly fit
in the formulation of Eqn. (2) since the last term in Eqn. (5)
does not become an expectation of the control variate by
the scale of 1/n. However, we categorize SAG as control
variate-based variance reduction methods along with other
methods, since they are all similar in the sense of incor-
porating an additional parameter to reduce the variance of
estimates.

The aforementioned approaches are originally under strong
convexity assumptions and has been extended to non-convex
optimization problems (Allen-Zhu & Hazan, 2016; Reddi
et al., 2016). Asynchronous (Reddi et al., 2015a; Meng et al.,
2016; Huo & Huang, 2017), proximal (Xiao & Zhang, 2014;
Allen-Zhu, 2017) and accelerated variants have also been
proposed.

3. Stochastic Doubly Robust Gradient
Before to introduce our main algorithm, we begin by formal-
izing the notion of weighted finite-sum problem that we are
interested in and introduce notation that we use throughout
this paper.

3.1. Problem Setting

We consider the cases where the individual loss term, fi,
in Eqn. (1) contributes unequally to the optimization, and
thus, should be weighted differently according to certain
criteria (i.e., wi 6= 1). The weight wi is defined by the
generic importance sampling literature (Weiss et al., 2013;
Thomas & Brunskill, 2017; Doroudi et al., 2017): when
training and testing data come from different distributions,

it can be specified to correct the difference. To elaborate,
we are only given a collected set of data from a distribution
q (which we call the sampling distribution). We originally
intend to compute the expected loss over some proper distri-
bution p (which we refer to as the target distribution), that
is, Ep[f(θ;x)], x ∼ q. Since we may not have direct access
to p, however, we want to do a finite-sum approximate to the
expectation over samples {xi}ni=1, xi ∈ Rd drawn from
the distribution at hand:

Ep[f(θ)] = Eq
[
p(x)

q(x)
f(θ;x)

]
=

1

n

n∑
i=1

p(xi)

q(xi)
fi(θ), xi ∼ q (6)

where p(xi)/q(xi), the ratio between target distribution and
sampling distribution is regarded as the weighting factor wi.

3.2. Weight-Corrected Gradient with Variance
Reduction

To solve the weighted finite-sum problem as Eqn. (6), in the
standard SGD algorithms, the t-th iteration involves picking
an instance from sampling distribution q over all instances
and updates parameters as

∆θt = wit∇fit(θ
t) (7)

where wit := p(xit)/q(xit) is per-sample importance
weight. This weight-corrected gradient can be thought of as
an inverse propensity score estimate, and we call it impor-
tance weighted SGD.

Within the literature of doubly robust estimator, our goal
is to reduce the variance of stochastic gradient algorithm
by introducing a control variate method to accelerate SGD.
Given Eqn. (2) and Eqn. (7), an intuitive approach to employ
a control variate to stochastic weighted gradient descent is
as follows,

∆θt = wit∇fit(θ
t)− witgit(θ̃) + g(θ̃) (8)

where θ̃ is required to be highly correlated with θ and
g(θ̃) := Ep[gi(θ̃)]. The resulted estimate is unbiased as
the stochastic weighted gradient in Eqn. (7) with reduced
variance.

The constructed gradient estimator in Eqn. (8) involves two
variables: per-sample importance weight wit and control
variate git . In other words, the estimation accuracy of our
approach relies on how correctly the two could be specified.
From this perspective, we see an advantage of our formula-
tion by observing that either one of two models needs to be
correctly specified to obtain an unbiased estimator:

Seen in a broader context, such distinguishing property of
our formulation in Eqn. (8) arises in many areas. Indeed, in
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the area of observational study, the property called double
robustness has been well studied (Robins et al., 1994; Bang
& Robins, 2005; Kang et al., 2007; Rotnitzky et al., 2012):
doubly robust (DR) estimators involves models for both the
propensity score and the conditional mean of the outcome,
and remain consistent even if one of those models (but not
both) is misspecified. By observing that the constitution and
the property of DR estimator are similar with that of our
constructed gradient estimator, we see an opportunity to
bring the insights of DR estimation into stochastic gradient
optimization.

Theorem 1. The weight-corrected gradient with variance
reduction in Eqn. (8) satisfies the double robustness, and
thus, Eqn. (8) gives a doubly robust estimation for gradients.

Proof. We rewrite Eqn. (8) in two-ways:

∆θt = wit∇fit(θ
t)−

{
witgit(θ̃)− g(θ̃)

}
= wit

{
∇fit(θ

t)− git(θ̃)
}

+ g(θ̃).

First, if the per-sample importance weight wit is assigned
appropriately (i.e., wit = pit/qit), then it is satisfied that
g(θ̃) = Eq[witgit(θ̃)] since we defined g(θ̃) := Ep[git(θ̃)].
That is, we obtain that E[witgit(θ̃)−g(θ̃)] = 0, and Eqn. (8)
gives an unbiased estimate of ∆θt = wit∇fit(θ

t).

On the other hand, if the control variate git approximates
∇fit(θ

(t)) correctly, then it is satisfied that E[∇fit(θ
t)−

git(θ̃)] = 0. Thus, we obtain that ∆θt = g(θ̃), and so
Eqn. (8) is an unbiased estimate regardless of the accuracy
of per-sample importance weights.

From the above two properties (i.e., if either wit or git is
specified correctly, then the estimation of the gradient ∆θt

is unbiased), we can conclude that the gradient estimation
in Eqn. (8) satisfies the double robustness.

The double robustness of Thm. 1 shows the conditions un-
der which unbiased estimation is possible even when some
data are missing due to certain causal relationships, and the
following result can be derived.

Corollary 1. At timestep t, for each sample index it, if ei-
ther per-sample importance weight wit or per-sample con-
trol variate git is specified correctly, the weight-corrected
gradient with variance reduction in Eqn. (8) converges to
the same point where SGD converges when using complete
data with no missing problem.

3.3. Confounded Mini-Batch Gradient

In the statistics community, and particularly in causal in-
ference settings, DR estimators provide an estimation on

average causal effect from observational data, adjusting ap-
propriately for confounders. The ability of DR estimators
to taking account to the causal effect of confounders can be
also useful in the general machine learning literature.

For instance, in supervised learning, the goal is to seek
a function h : X → Y , given n pairs of inputs and corre-
sponding target outputs {xi, yi}ni=1. Meanwhile, there often
exist contextual information associated with instances xi,
and it is not directly used to compute the objective (loss)
value but may indirectly influence the process of learning
the relation between xi and yi. In that case, one may want
to address causal effect of contextual information in the
process of learning the relation between xi and yi. By re-
garding the contextual information as confounding factors
in the approximation of the expected loss over training set,
we propose a method to adjust the causal effect of contextual
information that may confound the gradient estimation.

We maintain different models that estimate two key parame-
ters of Eqn. (8) – importance weights and control variates,
conditioned on each configuration of contextual informa-
tion. In practice, the contextual information could represent
a class-label or any tag associated with xi (Gopal, 2016).

In this paper, we decide to use class-label as contextual in-
formation as they are almost always available. Given a finite
set of class-labels as the observed contextual information,
we confine our interest to class imbalance problem, one of
the most common scenario we may encounter in classifica-
tion tasks. By taking a mini-batch variant of our estimator,
we view the class imbalance problem in the perspective of
importance weighting: if the data set collected in the mini-
batch is sampled from highly skewed distribution, we want
to correct the difference between the skewed distribution
and the target distribution which is assumed to be uniformly
balanced in terms of classes.

Let It be the set of indices of mini-batch instances at train-
ing iteration t, It,c is a disjoint subset of I , whose instances
belong to class c ∈ C, wc(·) is per-class model for esti-
mating importance weights and gt,c(·) is per-class control
variates. Then, our proposed algorithm for class imbalance
problem is described as:

∆θt =
1

C

C∑
c=1

[
1

|It,c|
∑

it,c∈It,c

wc(it,c)∇fit,c(θt) (9)

− 1

|It,c|
∑

it,c∈It,c

wc(it,c) git,c(θ̃c) + g(θ̃c)

]
.

We call this method stochastic doubly robust gradient
(SDRG). In practical implementations, an intuitive way of
setting importance weights in the above setting is to com-
pute the proportion of the number of instances that belong
to each class-label over the mini-batch size.
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Corollary 2. At timestep t, for each confounder class c and
each of its sample index it,c, if either per-class importance
weight wc or per-class control variate git,c is specified cor-
rectly, SDRG defined in Eqn. (9) converges to the same point
where SGD converges when using complete data with no
missing problem.

In particular, if only per-class importance weight wc is cor-
rectly described in Eqn. (9), SDRG can be reduced to the
variance reduced SGDs such as SVRG or SAGA accord-
ing to the per-class control variate git,c , thus inheriting the
properties of the algorithms.

Corollary 3. If per-class importance weight wc is specified
correctly but not per-class control variate git,c , SDRG in
Eqn. (9) converges to SVRG in case of Eqn. (3) and SAGA
in case of Eqn. (4), depending on which variance reduced
SGD is selected.

3.4. SDRG with Per-Covariate Momentum

We show that the existing variance reduction methods are
related to SDRG in the sense their mechanism of updating
control variates and computing the expectation of them (line
5 of Alg. 1 can be directly used in SDRG update rule). In the
following, we suggest a practical way to use SDRG, which
takes a per-covariate momentum to replace the per-covariate
control variate.

SDRG-M Parameter θ̃c is updated after every m itera-
tions as the same way as SVRG in Eqn. (3):

θ̃c =

{
θt if t mod m = 0

θ̃c otherwise

where m is the parameter update frequency and θ̃c is ini-
tialized by θ0 for all c, and we use the per-covariate control
variate gt(θ̃c) as the following per-covariate momentum:

gt(θ̃c) = η
1

|It,c|
∑

it,c∈It,c

∇fit,c(θt) + γ gt−1(θ̃c)

where g0(θ̃c) is initialized by 0 for all c.

Using momentum as a per-covariate control variate may be
considered a good way to improve the practical learning
performance, but unfortunately it is not known to lead to a
faster convergence rate (Roux et al., 2012).

4. Relation to Momentum
In practical implementations, it is natural to take θ̃ as the
average or a snapshot from the past iterations (Johnson &
Zhang, 2013). However, we propose to set θ̃ as a geometric
weighting of previous gradients and by doing so, show an

simple analysis on the relation between the above formula-
tion and momentum optimizer (Qian, 1999): the proposed
control variate method which is described as,

θt+1 = θt −∆θt

= θt −
(
wit∇fit(θ

t)− witgit(θ̃) + g(θ̃)
)

reduces to the formulation of momentum under a special
setting where git(θ̃) = g(θ̃) = γ

1−η∆θt−1 and wit = η

(6= 1), as follows,

θt+1 = θt −
(
η ∇fit(θ

t) + γ ∆θt−1
)

(10)

where γ is a momentum coefficient. In other words, the
control variate method with constant importance weight has
the exact same formulation with momentum update rule.

Proposition 1. The weight-corrected gradient with vari-
ance reduction in Eqn. (8) generalizes the momentum update
rule in Eqn. (10) into the cases of importance weighting.

From the perspective of the classic control variate schemes
that involves an additional parameter and its expectation,
momentum method can be regarded as a biased estimator
since the expectation of weighted control variates witgit
does not correspond to g(θ̃). The interpretation on the mo-
mentum as a biased estimator can be also find in SAG of
Eqn. (5) and from this observation, we see a connection
between momentum and SAG using our control variate for-
mulation. It is noteworthy that there has been an attempt
to find a relation between SAG and momentum optimizer:
in the work of (Roux et al., 2012), Eqn. (5) and Eqn. (10)
methods can be expressed in the following formulation,

SAG : θt+1 = θt + η

t∑
j=1

S(j, i1:t)∇fit(θ
j)

Momentum : θt+1 = θt + η
t∑

j=1

(γη)t−j ∇fit(θ
j)

where S(i, i1:t) is the selection function and equal to 1/n
if j corresponds to the last iteration where j = it and is
set to 0 otherwise. Roux et al. (Roux et al., 2012) finds a
connection of SAG on momentum method by showing that
they can be written in a similar formation. However, we
provide an simpler but stronger analysis by showing a direct
connection of SAG on momentum method by proving that
they reduce to the exactly same form of equation (Prop. 1).

5. Experiments
In this section, we experiment with SDRG-M in comparison
with importance weighted gradient descent for classification
task with MNIST (LeCun, 1998) and Fashion-MNIST (Xiao
et al., 2017) datasets. Both of MNIST and Fashion-MNIST
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(a) Sampling distribution is skewed consistently for a single class
(i.e. class 0)

(b) Sampling distribution is skewed for the classes in turn (i.e. class
0, 1, 2, ...)

Figure 1: Accuracy vs training timestep in MNIST

are well balanced for 10 classes, but as we want to test the
convergence rate in the setting of class imbalance problem,
we modify the sampling distribution to make the sampled
instances in mini-batches to be highly unbalanced in terms
of class-label. Assuming that we want the training instances
are uniformly distributed for all classes, we correct the gra-
dient computed over the mini-batch samples drawn from
the skewed distribution by employing importance weight-
ing. In such cases where importance weighting is employed,
we demonstrate that our SDRG-M which augments the im-
portance weighted stochastic gradient with control variates
whose expectation is replaced by a momentum, shows em-
pirical improvements on the convergence rate.

MNIST MNIST is a large database of handwritten digits
from 0 to 9 that is commonly used to evaluate various ma-
chine learning algorithms. The images are gray-scale with
size of 28 x 28 pixel and they are uniformly balanced for all
10 classes.

We devise two different mechanisms to generate settings
for the class imbalance problem: (a) first, the sampling dis-
tribution is skewed consistently for a single class during
the entire training process. For instance, the probability for
the instances from class 0 to be sampled is forced as 0.8,
where the instances from the rest of 9 classes are sampled
uniformly. (b) Otherwise, the class to be skewed with the
sampling probability of 0.8 is selected in turn from class 0,
1, 2, ... to 9.

We test the performance of SDRG-M update rule which can
be specifically written as the follows for 10 class classifica-
tion task: Let It be a set of indices for mini-batch samples at
t th training iteration, and It,c be the disjoint subset of It that

is the set of indices of instances that belong to class-label c.

∆θt =
1

10

9∑
c=0

[
1

|It,c|
∑

it,c∈It,c

∇fit,c(θt)

− 1

|It,c|
∑

it,c∈It,c

git,c(θ̃c) + gt(θ̃c)

]

We compare the performance of SDRG-M with two algo-
rithms: importance weighted gradient descent which is de-
scribed as,

∆θt =
1

10

9∑
c=0

1

|It,c|
∑

it,c∈It,c

∇fit,c(θt)

and vanilla SGD.

To compare SDRG-M and other algorithms, we train a neu-
ral network (with one fully-connected hidden layer of 100
nodes and ten softmax output nodes) using cross-entropy
loss with mini-batches of size 20 and learning rate of 0.01.
We evaluate the performance of SDRG-M with different
frequency of updating θ̃: m = 50, 100. For momentum
parameters, γ = 0.9 and η = 0.1 are used. And we add
two extra parameters α (0.5 for (a) and 1.5 for (b)) and β
(1.5 for (a) and 0.5 for (b)) for additional weighting sample
gradients and control variate function, respectively. These
parameters are corresponding to weights of wi = η and
git(θ̃) = g(θ̃) = γ

1−η∆θt−1 in Eqn. (10). The results are
all generated by taking the average from 20 runs of experi-
ments. The confidence intervals are too insignificant to be
noted and we decided not to include them in the figures.

In both Fig. 1 (a) and (b), SDRG-M empirically shows
a faster convergence rate than importance weighted SGD
and vanilla SGD. However, in Fig 1. (b) where the class
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(a) Sampling distribution is skewed consistently for a single class
(i.e. class 0)

(b) Sampling distribution is skewed for the classes in turn (i.e. class
0, 1, 2, ...)

Figure 2: Accuracy vs training timestep in Fashion-MNIST

to be skewed is changed after m iterations, which might
be a harder case than (b), the overall convergance rates
flucture more than Fig, 1 (a), but SDRG-M shows more
robust convergence than the other algorithms.

Fashion-MNIST Fashion-MNIST is an MNIST-like
database of clothes. The images are grayscale, with size
of 28 x 28 and associated with labels from 10 classes. We
evaluate the performance of SDRG-M in comparison with
importance weighted SGD and vanilla SGD, under exper-
imental settings which are exactly same with the MNIST
experiment above.

In Fig 2. we can observe the same tendency in the conver-
gence rate with Fig. 1, where SDRG-M shows less variant
converging pattern for both of cases (a) and (b).

6. Conclusion and Future Work
In this paper, we proposed a SGD algorithm that addresses
the caual effects of covariates on the missingness of incom-
plete data. Along with the previous studies that extended
the use of doubly robust estimators to a variety of machine
learning areas (Reddi et al., 2015b; Kallus, 2018; Dudı́k
et al., 2011; Jiang & Li, 2016; Thomas & Brunskill, 2016;
Farajtabar et al., 2018), this paper has been the first approach
to apply the idea of doubly robust estimator to stochastic
optimization. In SDRG, employing control variates for re-
gression adjustment allowed us to view the proposed method
in the framework for variance reduced SGDs that also uti-
lize control variate schemes, except that ours include the
additional weight correction term. For the efficiency in com-
puting and storing control variates, we suggested to choose
momentum functions as control variates in SDRG-M, and
by doing so, the direct derivation from SDRG to the mo-
mentum has been found as a byproduct. In addition to these

notable findings, empirical results have demonstrated that
the proposed SDRG shows faster convergence than vanilla
SGD and importance weighted SGD.

Future work includes further empirical studies to evaluate
the performance of SDRG in various cases of missing data
problem: for instance, the setting where multiple covariates
are involved in the missingness mechanism. It would be
essential to do deeper investigation on how the property of
double robustness affects the convergence of SGD, com-
pared to the existing variance reduced SGDs such as SAGA
and SVRG.
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