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Abstract

When training a machine learning model with observational data, it is often en-
countered that some values are systemically missing. Learning from the incomplete
data in which the missingness depends on some covariates may lead to biased
estimation of parameters and even harm the fairness of decision outcome. This
paper proposes how to adjust the causal effect of covariates on the missingness
when training models using stochastic gradient descent (SGD). Inspired by the
design of doubly robust estimator and its theoretical property of double robustness,
we introduce stochastic doubly robust gradient (SDRG) consisting of two models:
weight-corrected gradients for inverse propensity score weighting and per-covariate
control variates for regression adjustment. Also, we identify the connection between
double robustness and variance reduction in SGD by demonstrating the SDRG
algorithm with a unifying framework for variance reduced SGD. The performance
of our approach is empirically tested by showing the convergence in training image
classifiers with several examples of missing data.

1 Introduction

The missing data problem is commonly encountered when training a machine learning model with real
world data: unlike in the case of clean-cut experimental data, one or more covariates are often missing
in recorded observations. Learning from the incomplete data may introduce an undesirable bias,
especially when the missingness mechanism is not completely at random. More specifically, if the
missingness depends on some covariates (e.g., gender, age, religion, and race) involved in generating
the data, the estimation based on these unequally collected observations can be significantly different
from the ideal result. This does not only interfere with the consistency in the learning process, but
may also have a profound effect on the fairness of learning outcome.

To mitigate this problem, one may want to infer the causal effect of covariates on the missingness
mechanism when training models. Doubly robust estimator [25, 27], first introduced in the area of
observational study, has been known as an effective method to deal with such causal missingness and
still remains popular [3, 15, 26, 10, 37]. It employs two well-known approaches, regression adjustment
and inverse propensity score weighting, and by its interesting theoretical property, guarantees that
the estimate remains unbiased as long as either of the two is specified correctly. In recent years, the
double robustness has emerged in wide range of machine learning areas including covariate shift [24],
adversarial training [14], and reinforcement learning [7, 12, 30, 8].

In this paper, we introduce the concept of doubly robust estimator to stochastic gradient descent
(SGD) to correct the bias induced by the causal missingness in training data. Our approach, namely
stochastic doubly robust gradient (SDRG), consists of per-covariate control variates and weight-
corrected gradients that serve as the methods for regression adjustment and inverse propensity score
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weighting, respectively. To the best of our knowledge, SDRG is the first SGD algorithm that provides
the property, double robustness.

Recently, the use of control variate methods have been excessively studied in the literature of variance
reduction of SGD for accelerating the convergence [28, 5, 13, 32, 22]. Among these works, stochastic
variance reduced gradient (SVRG) [13] and SAGA [4], which is an unbiased estimate of stochastic
average gradient (SAG) [28], are closely related to SDRG in that both of them and SDRG can be
viewed within a generic framework for control variates of variance reduced SGDs [23], as SDRG
involves the use of per-covariate control variates. Finding connections between the ways control
variates are used, we will show how pursuing double robustness in gradient estimation is aligned with
reducing the variance.

Although SDRG and the variance reduced SGDs look similar to each other, there is a notable
difference in the situation they can handle: each gradient estimate should be weighted unequally to
reflect the missingness in training data and the weight-corrected gradients in SDRG are devised to
address this need, whereas the aforementioned variance reduction methods can only consider the
equal contribution of individual gradients. The SDRG algorithm can be straightforwardly applied to
practical scenarios such as class imbalance problem, as we demonstrate in this paper considering
some contextual information (such as class-label or any kind of tag) of training data as the covariates.

In summary, our contributions are as follows.

• We propose the first doubly robust SGD algorithm, called SDRG, and demonstrate that SDRG can
be devised in much the same way of SAGA and SVRG.

• We define per-covariate momentum functions as control variates of SDRG, and show that it does
not require to either periodically calculate (as SVRG) or store (as SAGA) the full gradients.

• We provide a relation between SDRG and momentum, which is a much more direct derivation than
the previous relationship presented in [28].

• We experimentally show the performance of SDRG in training image classifiers with class-
imbalanced MNIST and fashion-MNIST datasets since they are simple, yet commonly arising form
of missing data problems.

To clarify, we remark that our work is not aligned with the approaches that employ non-uniform
importance sampling for variance reduction in SGD based [20, 36, 16, 17, 29]. Rather than proposing
a sampling criteria, the purpose of our work is to develop a robust learning algorithm when the
weights are already determined with regards to the causal missingness.

2 Background and Related Work

A principled optimization problem in modern machine learning is that of the finite-sum form:
minimization of an objective function f(θ) that are naturally expressed as a summation over a finite
set of data D = {xi}ni=1, which is described as,

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

wifi(θ) (1)

where θ is a parameter to be optimized over, each term fi(θ) contributes with the weight wi,
and wi = 1 for typical setup. Such objective in Eqn. (1) commonly appears in the empirical risk
minimization framework where the objective is the average of losses computed over the data in D,
that is, fi(θ) := L(θ;xi)

Stochastic gradient descent (SGD) is a method of choice to deal with such optimization problem. It
iteratively updates the design parameter as follows: for each training iteration t = 1, 2, ..., T ,

θt+1 = θt − η ∆θt

∆θt = ∇fit(θ
t)

where η > 0 is a learning rate, it ∈ {1, ...n} and fit(·) is the loss computed with xit which is drawn
iteratively from a training set D.

In recent years, a class of algorithms to improve the convergence of SGD by reducing the variance
of the estimates has been proposed [28, 13, 32, 5]. Especially, Reddi et al. [23] provides a formal
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Algorithm 1 Generic Control Variate Method in SGD

Initialize: θ0 ∈ Rd, θ̃ = θ0, ∀i : gi(θ̃) = 0, η > 0

1: for t = 0, ..., (T − 1) do
2: (Uniform-) randomly pick an it ∈ {1, ..., n}
3: Compute the surrogate estimation of ∆θt:

∆θt = ∇fit(θ
t)− git(θ̃) + 1

n

∑n
i=1 git(θ̃)

4: Update the parameter θt+1:
θt+1 ← θt − η ∆θt

5: Update the schedule git(·) and/or θ̃:
Option I (SVRG): update gi(·), θ̃ using Eqn. (3)
Option II (SAGA): update git(θ̃) using Eqn. (4)

6: end for
7: return θT

unifying framework as Alg. 1 for stochastic variance reduction methods proposed in the literature,
including SVRG [13], SAGA [5], and SAG [28]. The basic idea behind the variance reduction
methods is to augment the gradient with a control variate and its expectation as,

∆θt = ∇fit(θ
t)− git(θ̃) + E[gi(θ̃)] (2)

where θ̃ is an approximation of θ. The resulted estimate is unbiased, and has smaller variance if
git(θ̃) has a high correlation with the target estimate∇fit(θ

t).

As studied in [23], the mechanisms of updating control variates, {gi(θ̃)}ni=1 can be arranged within
the unifying framework (see line 5 of Alg. 1) for the well-known variance reduction methods:

SVRG Parameter θ̃ is updated after every m iterations as

gi(·) = ∇fi(·) for all i

θ̃ =

{
θt if t mod m = 0

θ̃ otherwise
(3)

SAGA The gradients of all functions {∇fi(θ)}ni=1 are kept in memory, and one of them corre-
sponding to the training instance is updated at every iteration as

gi(θ̃) =

{
∇fi(θt) if i = it
gi(θ̃) otherwise .

(4)

For SAG, the only difference with SAGA is that the line 3 of Alg. 1 is changed into,

∆θt =
1

n

[
∇fit(θ

t)− git(θ̃)
]

+
1

n

n∑
i=1

git(θ̃) (5)

One may notice that SAG update rule does not exactly fit in the formulation of Eqn. (2) since the last
term in Eqn. (5) does not become an expectation of the control variate by the scale of 1/n. However,
we categorize SAG as control variate-based variance reduction methods along with other methods,
since they are all similar in the sense of incorporating an additional parameter to reduce the variance
of estimates.

The aforementioned approaches are originally under strong convexity assumptions and has been
extended to non-convex optimization problems [2, 22]. Asynchronous [23, 19, 11], proximal [35, 1]
and accelerated variants have also been proposed.

3 Stochastic Doubly Robust Gradient

Before to introduce our main algorithm, we begin by formalizing the notion of weighted finite-sum
problem that we are interested in and introduce notation that we use throughout this paper.
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3.1 Problem Setting

We consider the cases where the individual loss term, fi, in Eqn. (1) contributes unequally to the
optimization, and thus, should be weighted differently according to certain criteria (i.e., wi 6= 1).
The weight wi is defined by the generic importance sampling literature [33, 31, 6]: when training
and testing data come from different distributions, it can be specified to correct the difference. To
elaborate, we are only given a collected set of data from a distribution q (which we call the sampling
distribution). We originally intend to compute the expected loss over some proper distribution p
(which we refer to as the target distribution), that is, Ep[f(θ;x)], x ∼ q. Since we may not have
direct access to p, however, we want to do a finite-sum approximate to the expectation over samples
{xi}ni=1, xi ∈ Rd drawn from the distribution at hand:

Ep[f(θ)] = Eq
[
p(x)

q(x)
f(θ;x)

]
=

1

n

n∑
i=1

p(xi)

q(xi)
fi(θ) , xi ∼ q (6)

where p(xi)/q(xi), the ratio between target distribution and sampling distribution is regarded as the
weighting factor wi.

3.2 Weight-Corrected Gradient with Variance Reduction

To solve the weighted finite-sum problem as Eqn. (6), in the standard SGD algorithms, the t-th
iteration involves picking an instance from sampling distribution q over all instances and updates
parameters as

∆θt = wit∇fit(θ
t) (7)

where wit := p(xit)/q(xit) is per-sample importance weight. This weight-corrected gradient can be
thought of as an inverse propensity score estimate, and we call it importance weighted SGD.

Within this literature of doubly robust estimator, our goal is to reduce the variance of stochastic
gradient algorithm by introducing a control variate method to accelerate SGD. Given Eqn. (2) and
Eqn. (7), an intuitive approach to employ a control variate to stochastic weighted gradient descent is
as follows,

∆θt = wit∇fit(θ
t)− witgit(θ̃) + g(θ̃) (8)

where θ̃ is required to be highly correlated with θ and g(θ̃) := Ep[gi(θ̃)]. The resulted estimate is
unbiased as the stochastic weighted gradient in Eqn. (7) with reduced variance.

The constructed gradient estimator in Eqn. (8) involves two variables: per-sample importance weight
wit and control variate git . In other words, the estimation accuracy of our approach relies on how
correctly the two could be specified. From this perspective, we see an advantage of our formulation
by observing that either one of two models needs to be correctly specified to obtain an unbiased
estimator:

Seen in a broader context, such distinguishing property of our formulation in Eqn. (8) arises in many
areas. Indeed, in the area of observational study, the property called double robustness has been well
studied [25, 3, 15, 26]: doubly robust (DR) estimators involves models for both the propensity score
and the conditional mean of the outcome, and remain consistent even if one of those models (but not
both) is misspecified. By observing that the constitution and the property of DR estimator are similar
with that of our constructed gradient estimator, we see an opportunity to bring the insights of DR
estimation into stochastic gradient optimization.
Theorem 1. The weight-corrected gradient with variance reduction in Eqn. (8) satisfies the double
robustness. Thus, Eqn. (8) is a doubly robust gradient estimator.

Proof. First, we rewrite Eqn. (8) as follows:

∆θt = wit∇fit(θ
t)−

{
witgit(θ̃)− g(θ̃)

}
= wit

{
∇fit(θ

t)− git(θ̃)
}

+ g(θ̃)
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Since E[witgit(θ̃)] is equal to g(θ̃) and E[∇fit(θ
t) − git(θ̃)] = 0, we can observe that ∆θt is

unbiased if either wit is accurately estimated or the model git(θ̃) is correct. Therefore, we can
conclude that Eqn. (8) is a doubly robust estimator.

In the statistics community, and particularly in causal inference settings, DR estimators provide an
estimation on average causal effect from observational data, adjusting appropriately for confounders.
The ability of DR estimators to taking account to the causal effect of confounders can be also useful
in the general machine learning literature. For instance, in supervised machine learning, the goal is to
seek a function h : X → Y , given n pairs of inputs and corresponding target outputs {xi, yi}ni=1.
Meanwhile, there often exist contextual information associated with instances xi, and it is not directly
used to compute the objective (loss) value but may indirectly influence the process of learning
the relation between xi and yi. In that case, one may want to address causal effect of contextual
information in the process of learning the relation between xi and yi. By regarding the contextual
information as confounding factors in the approximation of the expected loss over training set, we
propose a method to adjust the causal effect of contextual information that may confound the gradient
estimation.

3.3 Confounded Mini-Batch Gradient

We maintain different models that estimate two key parameters of Eqn. (8) – importance weights
and control variates, conditioned on each configuration of contextual information. In practice, the
contextual information could represent a class-label or any tag associated with xi [9]. In this paper, we
decide to use class-label as contextual information as they are almost always available. Given a finite
set of class-labels as the observed contextual information, we confine our interest to class imbalance
problem, one of the most common scenario we may encounter in classification tasks. By taking a mini-
batch variant of our estimator, we view the class imbalance problem in the perspective of importance
weighting: if the data set collected in the mini-batch is sampled from highly skewed distribution,
we want to correct the difference between the skewed distribution and the target distribution which
is assumed to be uniformly balanced in terms of classes. Let It be the set of indices of mini-batch
instances at training iteration t, It,c is a disjoint subset of I , whose instances belong to class c, wc(·)
is per-class model for estimating importance weights and gt,c(·) is per-class control variates. Then,
our proposed algorithm for class imbalance problem is described as,

∆θt =
1

C

C∑
c=1

[
1

|It,c|
∑

it,c∈It,c

wc(itc)∇fit,c(θt)− 1

|It,c|
∑

it,c∈It,c

wc(itc) git,c(θ̃c) + g(θ̃c)

]
We call this method stochastic doubly robust gradient (SDRG). In practical implementations, an
intuitive way of setting importance weights in the above setting is to compute the proportion of the
number of instances that belong to each class-label over the mini-batch size.

We show that the existing variance reduction methods are related to SDRG in the sense their
mechanism of updating control variates and computing the expectation of them (line 5 of Alg. 1 can
be directly used in SDRG update rule) as follows:

θ̃c =

{
θt if t mod m = 0

θ̃c otherwise

where m is the parameter update frequency and θ̃c is initialized by θ0 for all c, and

gt(θ̃c) = η
1

|It,c|
∑
it∈It

∇fit,c(θt) + γ gt−1(θ̃c)

where g0(θ̃c) is initialized by 0 for all c.

4 Relation to Momentum

In practical implementations, it is natural to take θ̃ as the average or a snapshot from the past iterations
[13]. However, we propose to set θ̃ as a geometric weighting of previous gradients and by doing so,
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show an simple analysis on the relation between the above formulation and momentum optimizer
[21]: the proposed control variate method which is described as,

θt+1 = θt −∆θt

= θt −
(
wit∇fit(θ

t)− witgit(θ̃) + g(θ̃)
)

reduces to the formulation of momentum under a special setting where git(θ̃) = g(θ̃) = γ
1−η∆θt−1

and wit = η (6= 1), as follows,

θt+1 = θt −
(
η ∇fit(θ

t) + γ ∆θt−1
)

(9)

where γ is a momentum coefficient. In other words, the control variate method with constant
importance weight has the exact same formulation with momentum update rule.
Proposition 1. The weight-corrected gradient with variance reduction in Eqn. (8) generalizes the
momentum update rule in Eqn. (9) into the cases of importance weighting.

From the perspective of the classic control variate schemes that involves an additional parameter and
its expectation, momentum method can be regarded as a biased estimator since the expectation of
weighted control variates witgit does not correspond to g(θ̃). The interpretation on the momentum as
a biased estimator can be also find in SAG of Eqn. (5) and from this observation, we see a connection
between momentum and SAG using our control variate formulation. It is noteworthy that there has
been an attempt to find a relation between SAG and momentum optimizer:

in the work of [28], Eqn. (5) and Eqn. (9) methods can be expressed in the following formulation,

SAG : θt+1 = θt + η

t∑
j=1

S(j, i1:t)∇fit(θ
j)

Momentum : θt+1 = θt + η

t∑
j=1

(γη)t−j ∇fit(θ
j)

where S(i, i1:t) is the selection function and equal to 1/n if j corresponds to the last iteration where
j = it and is set to 0 otherwise. Roux et al. [28] finds a connection of SAG on momentum method by
showing that they can be written in a similar formation. However, we provide an simpler but stronger
analysis by showing a direct connection of SAG on momentum method by proving that they reduce
to the exactly same form of equation (Prop. 1).

5 Experiments

In this section, we experiment with SDRG in comparison with importance weighted gradient descent
for classification task with MNIST [18] and Fashion-MNIST [34] datasets. Both of MNIST and
Fashion-MNIST are well balanced for 10 classes, but as we want to test the convergence rate in
the setting of class imbalance problem, we modify the sampling distribution to make the sampled
instances in mini-batches to be highly unbalanced in terms of class-label. Assuming that we want the
training instances are uniformly distributed for all classes, we correct the gradient computed over the
mini-batch samples drawn from the skewed distribution by employing importance weighting. In such
cases where importance weighting is employed, we demonstrate that our SDRG which augments the
importance weighted stochastic gradient with control variates whose expectation is replaced by a
momentum, shows empirical improvements on the convergence rate.

MNIST MNIST is a large database of handwritten digits from 0 to 9 that is commonly used to
evaluate various machine learning algorithms. The images are grayscale with size of 28 x 28 pixel
and they are uniformly balanced for all 10 classes.

We devise two different mechanisms to generate settings for the class imbalance problem: (a) first,
the sampling distribution is skewed consistently for a single class during the entire training process.
For instance, the probability for the instances from class 0 to be sampled is forced as 0.8, where the
instances from the rest of 9 classes are sampled uniformly. (b) Otherwise, the class to be skewed with
the sampling probability of 0.8 is selected in turn from class 0, 1, 2, ... to 9.

6



(a) Sampling distribution is skewed consistently for
a single class (i.e. class 0)

(b) Sampling distribution is skewed for the classes in
turn (i.e. class 0, 1, 2, ...)

Figure 1: Accuracy vs training timestep in MNIST

(a) Sampling distribution is skewed consistently for
a single class (i.e. class 0)

(b) Sampling distribution is skewed for the classes in
turn (i.e. class 0, 1, 2, ...)

Figure 2: Accuracy vs training timestep in Fashion-MNIST

We test the performance of SDRG update rule which can be specifically written as the follows for 10
class classification task: Let It be a set of indices for mini-batch samples at t th training iteration, and
It,c be the disjoint subset of It that is the set of indices of instances that belong to class-label c.

∆θt =
1

10

9∑
c=0

[
1

|It,c|
∑
it∈It

∇fit,c(θt)− 1

|It,c|
∑
it∈It

git,c(θ̃c) + gt(θ̃c)

]

We compare the performance of SDRG with two algorithms: importance weighted gradient descent
which is described as,

∆θt =
1

10

9∑
c=0

1

|It,c|
∑

it,c∈It,c

∇fit,c(θt)

and vanilla SGD.

To compare SDRG and other algorithms, we train a neural network (with one fully-connected hidden
layer of 100 nodes and ten softmax output nodes) using cross-entropy loss with mini-batches of
size 20 and learning rate of 0.01. We evaluate the performance of SDRG with different frequency
of updating θ̃: m = 50, 100. For momentum parameters, γ = 0.9 and η = 0.1 are used. And
we add two extra parameters α (0.5 for (a) and 1.5 for (b)) and β (1.5 for (a) and 0.5 for (b)) for
additional weighting sample gradients and control variate function, respectively. These parameters
are corresponding to weights of wi = η and git(θ̃) = g(θ̃) = γ

1−η∆θt−1 in Eqn. (9). The results are
all generated by taking the average from 20 runs of experiments. The confidence intervals are too
insignificant to be noted and we decided not to include them in the figures.

In both Fig. 1 (a) and (b), SDRG empirically shows a faster convergence rate than importance
weighted SGD and vanilla SGD. However, in Fig 1. (b) where the class to be skewed is changed after
m iterations, which might be a harder case than (b), the overall convergance rates flucture more than
Fig, 1 (a), but SDRG shows more robust convergence than the other algorithms.
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Fashion-MNIST Fashion-MNIST is an MNIST-like database of clothes. The images are grayscale,
with size of 28 x 28 and associated with labels from 10 classes. We evaluate the performance of
SDRG in comparison with importance weighted SGD and vanilla SGD, under experimental settings
which are exactly same with the MNIST experiment above.

In Fig 2. we can observe the same tendency in the convergence rate with Fig. 1, where SDRG shows
less variant converging pattern for both of cases (a) and (b).

6 Conclusion and Future Work

In this paper, we proposed a SGD algorithm that addresses the caual effects of covariates on the
missingness of incomplete data. Along with the previous studies that extended the use of doubly
robust estimators to a variety of machine learning areas [24, 14, 7, 12, 30, 8], this paper has been
the first approach to apply the idea of doubly robust estimator to stochastic optimization. In SDRG,
employing control variates for regression adjustment allowed us to view the proposed method in
the framework for variance reduced SGDs that also utilize control variate schemes, except that ours
include the additional weight correction term. For the efficiency in computing and storing control
variates, we suggested to choose momentum function as control variates and by doing so, the direct
derivation from SDRG to the momentum has been found as a byproduct. In addition to these notable
findings, empirical results have demonstrated that the proposed SDRG shows faster convergence than
vanilla SGD and importance weighted SGD.

Future work includes further empirical studies to evaluate the performance of SDRG in various
cases of missing data problem: for instance, the setting where multiple covariates are involved in the
missingness mechanism. Also, theoretical analysis on convergence of SDRG should be provided. It
would be essential to do deeper investigation on how the property of double robustness affects the
convergence of SGD, compared to the existing variance reduced SGDs such as SAGA and SVRG.
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